A High Performance Sensor for Triaxial Cutting Force Measurement in Turning
نویسندگان
چکیده
This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.
منابع مشابه
The Development of a Triaxial Cutting Force Sensor Based on a MEMS Strain Gauge
Cutting force measurement is a quintessential task for status monitoring during machining. In the past, a number of cutting force sensors have been developed, each featuring a different set of performance advantages. In a pursuit to improve the measuring sensitivity and reduce the cross-interference error, in this paper we propose a triaxial cutting force sensor based on a commercial micro-elec...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملModeling and analysis of a three-component piezoelectric force sensor
This paper presents a mathematical model for the vibration analysis of a three-component piezoelectric force sensor. The cubic theory of weakly nonlinear electroelasticity is applied to the model for describing the electromechanical coupling effect in the piezoelectric sensing elements which operate in thickness-shear and thickness-stretch vibration modes. Hamilton's principle is used to derive...
متن کاملMachinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling
17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...
متن کاملMachinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling
17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...
متن کامل